PI3K(p110 alpha) protects against myocardial infarction-induced heart failure: identification of PI3K-regulated miRNA and mRNA.
نویسندگان
چکیده
OBJECTIVE Myocardial infarction (MI) is a serious complication of atherosclerosis associated with increasing mortality attributable to heart failure. Activation of phosphoinositide 3-kinase [PI3K(p110 alpha)] is considered a new strategy for the treatment of heart failure. However, whether PI3K(p110 alpha) provides protection in a setting of MI is unknown, and PI3K(p110 alpha) is difficult to target because it has multiple actions in numerous cell types. The goal of this study was to assess whether PI3K(p110 alpha) is beneficial in a setting of MI and, if so, to identify cardiac-selective microRNA and mRNA that mediate the protective properties of PI3K(p110 alpha). METHODS AND RESULTS Cardiomyocyte-specific transgenic mice with increased or decreased PI3K(p110 alpha) activity (caPI3K-Tg and dnPI3K-Tg, respectively) were subjected to MI for 8 weeks. The caPI3K-Tg subjected to MI had better cardiac function than nontransgenic mice, whereas dnPI3K-Tg had worse function. Using microarray analysis, we identified PI3K-regulated miRNA and mRNA that were correlated with cardiac function, including growth factor receptor-bound 14. Growth factor receptor-bound 14 is highly expressed in the heart and positively correlated with PI3K(p110 alpha) activity and cardiac function. Mice deficient in growth factor receptor-bound 14 have cardiac dysfunction. CONCLUSIONS Activation of PI3K(p110 alpha) protects the heart against MI-induced heart failure. Cardiac-selective targets that mediate the protective effects of PI3K(p110 alpha) represent new drug targets for heart failure.
منابع مشابه
Knockdown of MicroRNA-122 Protects H9c2 Cardiomyocytes from Hypoxia-Induced Apoptosis and Promotes Autophagy
BACKGROUND Acute myocardial infarction (AMI) is a severe disease causing heart failure and sudden death. Studies indicate that microRNAs (miRNAs) are involved in the pathophysiology of AMI. In the present study, we carefully explored the effects of miR-122 on myocardial hypoxia injury and its possible underlying mechanism. MATERIAL AND METHODS miR-122 expression was analyzed in H9c2 cardiomyocy...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملTHE EFFECT OF ENDURANCE EXERCISE TRAINING AND OCTOPAMINE SUPPLEMENTATION ON NLRP1 INFLAMMASOME, PI3K, APOPTOSIS, AND HISTOPATHOLOGICAL CHANGES IN HEART TISSUE OF RATS POISONED WITH DEEP-FRIED OIL
Background & Aims: Common nutritional mistakes cause inflammation and homeostasis disruption in heart cells. Inflammasome complex is one of the pathways that induces inflammation and degradation of cardiac protein regeneration. The aim of the present study was to investigate changes in NLRP1inflammasome, PI3k, apoptosis, and histopathology of heart tissue following aerobic physical activity and...
متن کاملSevoflurane Postconditioning Protects Rat Hearts against Ischemia-Reperfusion Injury via the Activation of PI3K/AKT/mTOR Signaling
Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway plays a key role in myocardial ischemia-reperfusion (I/R) injury. Mammalian target of rapamycin (mTOR), a downstream target of PI3K/AKT signaling, is necessary and sufficient to protect the heart from I/R injury. Inhaled anesthetic sevoflurane is widely used in cardiac surgeries because its induction and recovery are faster and...
متن کامل1, 25 Dihydroxyvitamin D3 Protects the Heart Against Pressure Overload-induced Hypertrophy without Affecting SIRT1 mRNA Level
Background and Aims: There has been scant information concerning antihypertrophic effects of vitamin D specifically on its cellular and molecular mechanisms. Sirtuin 1 (SIRT1) is regarded as a key deacetylase enzyme in cardiomyocytes which applies potential cardioprotective effects by functional regulation of different proteins. This study aimed to evaluate the effects of 1, 25-dihydroxyvitamin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 30 4 شماره
صفحات -
تاریخ انتشار 2010